One day I was cooking pasta when the kitchen started to fill with the odor of fish. I happen to hate fish, so this was not a pleasant experience. It was also a mystery, since I never cook fish. A little detective work discovered that the offensive odor was coming from the pasta. Apparently I didn’t notice the “Now with Omega 3” label on the box when I purchased it. My daughter and I still refer to this as the “fish pasta incident”.

Why would someone foul a perfectly good box of rotini with omega 3 oils? This is based on the belief that omega 3 fatty acids reduce heart disease and vascular risk, probably through reducing blood pressure and cholesterol. This is a plausible claim, but as we see over and over again in medicine, plausibility (while nice) is insufficient as a basis for clinical claims.

There have been numerous clinical trials looking mainly at death, stroke, and cardiac outcomes related to omega 3 consumption, either in food or in supplements. Now the Cochrane Library has published the largest systematic review of these studies to date. Unfortunately, the review shows little benefit from consuming omega 3 fatty acid. This is a fairly extensive review with good statistical power:

We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months’ duration and included adults at varying cardiovascular risk, mainly in high‐income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3‐ or ALA‐rich or enriched foods or dietary advice compared to placebo or usual diet.

LCn3s are long chain fatty acids from fish, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA is plant-based omega 3-alpha‐linolenic acid. Fatty acids are essentially chains of carbon atoms with an OOH group at one end. The available binding sites on the carbon atoms are filled with hydrogen atoms. If every binding site is occupied with a hydrogen, that is a saturated fatty acid. If instead of hydrogen atoms there is a double bond between two adjacent carbon atoms, that is an unsaturated fatty acid. If there are multiple double bonds, that is polyunsaturated. Omega 3 fatty acids are unsaturated, with a double bond between the third and fourth carbon atoms from the end opposite the OOH group.

The number, location, and orientation of the double bonds determine the health effects of fatty acids on the body. One aspect of this is their effect on triglycerides and LDL and HDL types of cholesterol, which in turn affect how much cholesterol gets deposited on the inside of blood vessels. There are also subtypes of LDL and HDL which are also likely important to their health effects.

Consuming omega-3 fatty acids tends to decrease triglyceride levels, which have a positive health effect, but they also decrease HDL, which can have a negative health effect. So what is the net effect on balance? That is what the review sought to determine. They found:

Meta‐analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all‐cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high‐quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high‐quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses – LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.

Increasing ALA intake probably makes little or no difference to all‐cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low‐quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low‐quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.

The bottom line of all that is that there was no clear health benefit from consuming omega-3 fatty acids in food or supplements. There was a suggestion of a possible benefit from LCn3 on cardiac events, but this did not hold up when they took into consideration the quality of the evidence. The better trials, with less risk of bias, tended to be negative.

As always with such trials, you can never prove zero benefit (or zero risk), but an essentially negative trial or meta-analysis sets statistical limits on the size of any remaining plausible effect. What we can now say with a fairly high degree of confidence is that any health benefit from consuming omega-3 fatty acids is tiny, probably too small to warrant supplementing (or adding it to pasta).

This is unfortunate. It would be desirable if we could reduce the leading cause of death in developed nations simply by taking a supplement or making small changes to our diet. To be clear, a healthy diet is still important to overall health and reducing vascular risk, but going out of your way to consume omega-3 is not necessary.

Posted by Steven Novella

Founder and currently Executive Editor of Science-Based Medicine Steven Novella, MD is an academic clinical neurologist at the Yale University School of Medicine. He is also the president and co-founder of the New England Skeptical Society, the host and producer of the popular weekly science podcast, The Skeptics’ Guide to the Universe, and the author of the NeuroLogicaBlog, a daily blog that covers news and issues in neuroscience, but also general science, scientific skepticism, philosophy of science, critical thinking, and the intersection of science with the media and society. Dr. Novella also contributes every Sunday to The Rogues Gallery, the official blog of the SGU.